Category: News

Quantum Chemistry on Quantum Computers: A Method for Preparation of Multiconfigurational Wave Functions on Quantum Computers without Performing Post-Hartree–Fock Calculations

ACS Cent. Sci.,,  (DOI: 10.1021/acscentsci.8b00788) Open access The full configuration interaction (full-CI) method is capable of providing the numerically best wave functions and energies of atoms and molecules within basis sets being used, although it is intractable for classical computers. Quantum computers can perform full-CI calculations in polynomial time against the system size by adopting […]

Open shell electronic state calculations on quantum computers: A quantum circuit for the preparation of configuration state functions based on Serber construction

Chemical Physics Letters: X,  (DOI: 10.1016/j.cpletx.2018.100002) Open access Full configuration interaction (full-CI) calculations can be executed efficiently on quantum computers (QCs) by utilizing a quantum phase estimation algorithm (QPEA). In the QPEA-based full-CI on QCs, the preparation of the initial guess wave functions having large overlap with the full-CI root is crucial. Recently, we proposed […]

Microscopic Behavior of Active Materials inside a TCNQ-based Lithium Ion Rechargeable Battery by in-situ 2D ESR Measurements

ACS Appl. Mater. Interfaces 10, pp.43631-43640 (2018) (DOI: 10.1021/acsami.8b14967) Real-time spectroscopic measurements in rechargeable batteries are important to understand the electrochemistry of the batteries at the molecular level and improve relevant functionalities. We have applied in-situ two-dimensional (2D) ESR spectroscopy to a well-known organic lithium ion battery, which is composed of 7,7,8,8-tetracyanoquinodimethane (TCNQ) as the cathode-active material and a […]

ESR analyses of picket fence MnII and 6th ligand coordinated FeIII porphyrins (S = 5/2) and a CoII(hfac) complex (S = 3/2) with sizable ZFS parameters revisited: a full spin Hamiltonian approach and quantum chemical calculations

Dalton Trans., 47, 16429-16444 (2018). (DOI:10.1039/C8DT02988A) The fictitious spin-1/2 (effective spin-1/2) Hamiltonian approach has been the putative method to analyze the conventional fine-structure/hyperfine ESR spectra of high spin metallocomplexes with sizable zero-field splitting (ZFS) tensors since the early 1950s, and the approach gives salient principal geff-values far from g = 2 without explicitly affording their […]

Reversible solution pi-dimerization and long multicenter bonding in a stable phenoxyl radical

Chemistry – A European Journal Chem. Eur. Journal, 24, pp.14906-14910 (2018). (DOI:10.1002/chem.201802204) Reversible solution p-dimerization is observed in the stable neutral phenoxyl radical 2,6-bis-(8-quinolylamino)-4-(tertbutyl) phenoxyl baqp and is spectroscopically characterized. This behavior, not previously observed for p-extended phenoxyl radicals, is relevant to the formation of long multicenter bonding in the p-dimer at low temperature akin […]

Fe-Transferrins or their homologues in ex-vivo mushrooms as identified by ESR spectroscopy and quantum chemical calculations: a full spin-Hamiltonian approach for the ferric sextet state with intermediate zero-field splitting parameters

Food Chemistry Volume 266, 15 November 2018, Pages 24-30 https://doi.org/10.1016/j.foodchem.2018.05.092 Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the […]

Using optimal control methods with constraints to generate singlet states in NMR

J. Magn. Reson., 291, pp.14-22 (2018). DOI:10.1016/j.jmr.2018.03.005 A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent […]

Behaviour of DFT-based approaches to the spin– orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo)

Phys. Chem. Chem. Phys., 19, pp.30128-30138 (2017). DOI: 10.1039/C7CP05533a Spin–orbit contributions to the zero-field splitting (ZFS) tensor (DSO tensor) of MIII(acac)3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson–Khanna (PK) and natural orbital-based Pederson–Khanna (NOB-PK)) methods, focusing on the behaviour […]

Molecular Spin Science for Future Innovation © 2015-2018