Food Chemistry Volume 266, 15 November 2018, Pages 24-30 https://doi.org/10.1016/j.foodchem.2018.05.092 Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the […]

### Category: Research Highlight

## Using optimal control methods with constraints to generate singlet states in NMR

J. Magn. Reson., 291, pp.14-22 (2018). DOI:10.1016/j.jmr.2018.03.005 A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent […]

## Behaviour of DFT-based approaches to the spin– orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo)

Phys. Chem. Chem. Phys., 19, pp.30128-30138 (2017). DOI: 10.1039/C7CP05533a Spin–orbit contributions to the zero-field splitting (ZFS) tensor (DSO tensor) of MIII(acac)3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson–Khanna (PK) and natural orbital-based Pederson–Khanna (NOB-PK)) methods, focusing on the behaviour […]

## Analyses of sizable ZFS and magnetic tensors of high spin metallocomplexes

Phys. Chem. Chem. Phys., accepted (2017). DOI: 10.1039/C7CP03850J The fictitious spin-1/2 Hamiltonian approach is the putative method to analyze the fine-structure/hyperfine ESR spectra of high spin metallocomplexes having sizable zerofield splitting (ZFS), thus giving salient principal g-values far from around g = 2 without explicitly providing their ZFS parameters in most cases. Indeed, the significant departure of the g-values […]

## Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules

J. Phys. Chem. A 120, pp.6459-6466 (2016). DOI: 10.1021/acs.jpca.6b04932 Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial […]

## Adiabatic Quantum Computing with Spin Qubits Hosted by Molecules

Phys. Chem. Chem. Phys., accepted. DOI:10.1039/C4CP04744C A molecular spin quantum computer (MSQC) requires electron spin qubits which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins which are topologically connected, particularly in organic molecular spin systems are client qubits, while electron spins […]

## An ab initio MO study of heavy atom eﬀects on the zero-field splitting tensors of high-spin nitrenes: how the spin–orbit contributions are affecte

Phys. Chem. Chem. Phys., 16, pp.9171-9181 (2014). DOI:10.1039/c4cp00822g The CASSCF and the hybrid CASSCF–MRMP2 methods are applied to the calculations of spin–spin and spin–orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin- septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin–orbit term of the D ten- sors (DSO tensors). […]

## Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

Molecular Physics, 111, published on the web on July 4, 2013 DOI:10.1080/00268976.2013.811304 Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a […]

## Hexamethoxyphenalenyl as a Possible Quantum Spin Simulator: An Electronically Stabilized Neutral π Radical with Novel Quantum Coherence Owing to Extremely High Nuclear Spin Degeneracy

Angew. Chem. Int. Ed., 52, published on the web on April 2, 2013 DOI:10.1002/anie.201301435 A phenalenyl radical with six methoxy groups, which were introduced symmetrically, has been synthesized. The extensively delocalized and highly symmetric lectronic-spin system was studied with advanced cw-/pulsed-ESR techniques, thereby giving an experimental model to explore molecular quantum spin simulators with novel […]

## Prof. Takeji Takui Receives 2013 Bruker Prize

The Electron Spin Resonance (ESR) Spectroscopy Group of the Royal Society of Chemistry (RSC) has honored Professor Takeji Takui (Graduate School of Science, Osaka City University, Japan) with the 2013 Bruker Prize. Professor Takui has the honor of an invitation to give the Bruker Prize Lecture at the 46th Annual International Meeting of the ESR […]